본문 바로가기

수리/자연과학

유클리드 기본모음 제안 38. 평행한 두 직선에서 같은 길이의 밑변을 갖는 삼각형은 면적이 같다

제안 38. 평행한 두 직선에서 같은 길이를 밑변으로 갖는 삼각형은 면적이 서로 같다.

Proposition 38 Triangles which are on equal bases and in the same parallels equal one another.

 

 

Let ABC and DEF be triangles on equal bases BC and EF and in the same parallels BF and AD.

I say that the triangle ABC equals the triangle DEF.

Produce AD in both directions to G and H. Draw BG through B parallel to CA, and draw FH through F parallel to DE.

Then each of the figures GBCA and DEFH is a parallelogram, and GBCA equals DEFH, for they are on equal bases BC and EF and in the same parallels BF and GH.

Moreover the triangle ABC is half of the parallelogram GBCA, for the diameter AB bisects it. And the triangle FED is half of the parallelogram DEFH, for the diameter DF bisects it.

Therefore the triangle ABC equals the triangle DEF.

Therefore triangles which are on equal bases and in the same parallels equal one another.

 

 

### 덧붙이는 말 ###

 

 

 

 

 

 

 

 

 

 

### 그리스어 원문과 번역 ###