제안 40. 주어진 직선 위에 같은 길이의 밑변을 갖고 같은 방향으로 있는 삼각형이 면적이 같으면 그 정점들은 밑변에 평행한 직선위에 있다.
Proposition 40 Equal triangles which are on equal bases and on the same side are also in the same parallels.
Let ABC and CDE be equal triangles on equal bases BC and CE and on the same side.
I say that they are also in the same parallels.
Join AD. I say that AD is parallel to BE.
If not, draw AF through A parallel to BE, and join FE.
Therefore the triangle ABC equals the triangle FCE, for they are on equal bases BC and CE and in the same parallels BE and AF.
But the triangle ABC equals the triangle DCE, therefore the triangle DCE also equals the triangle FCE, the greater equals the less, which is impossible. Therefore AF is not parallel to BE.
Similarly we can prove that neither is any other straight line except AD, therefore AD is parallel to BE.
Therefore equal triangles which are on equal bases and on the same side are also in the same parallels.
### 덧붙이는 말 ###
### 그리스어 원문과 번역 ###
'수리/자연과학' 카테고리의 다른 글
유클리드 기본모음 제안 42. 주어진 삼각형의 면적과 한 내각을 갖는 평행사변형의 작도 (0) | 2012.10.08 |
---|---|
유클리드 기본모음 제안 41. 평행선 사이에 있는 같은 밑변의 평행사변형과 삼각혀의 면적간의 관계에 대하여 (0) | 2012.10.08 |
유클리드 기본원론 제안 39. 밑변을 공유하는 같은 방향의 같은 면적의 삼각형의 정점들은 밑변에 평행한 한 직선위에 있다 (0) | 2012.10.08 |
유클리드 기본모음 제안 38. 평행한 두 직선에서 같은 길이의 밑변을 갖는 삼각형은 면적이 같다 (0) | 2012.10.08 |
유클리드 기본원론 제안 37. 두 평행한 직선에서 같은 밑변을 가지고 있는 삼각형은 면적이 같다 (0) | 2012.10.08 |